Chapter 4 Warm-Up

Section 4.1 Warm-Up

- **1.** For each equation, use the same number in each box to make a true statement.
 - $\mathbf{a)} \left(\square \right) \left(\square \right) = 64$
 - $\mathbf{b})\left(\boxed{}\right)\left(\boxed{}\right)=100$
 - $\mathbf{c}) \left(\square \right) \left(\square \right) = 25$
 - $\mathbf{d})\left(\boxed{}\right)\left(\boxed{}\right)=144$
- **2.** Estimate the value of each square root.
 - **a**) $\sqrt{27}$
 - **b**) $\sqrt{90}$
 - **c**) $\sqrt{78}$

Section 4.2 Warm-Up

- **1.** Use the exponent laws to rewrite each expression as a single power.
 - **a)** $(x^3)(x^5)$
 - **b)** $\frac{y^8}{v^2}$
 - $\mathbf{c)} \ \frac{\left(b^{5}\right)\left(b\right)}{b^{2}}$
- **2.** Use the exponent laws to rewrite each expression as a single power.
 - **a)** $(x^5)^2$ **b)** $\frac{y^7}{(y^2)^3}$ **c)** $(b^2)^3 (b^4)^4$
- **3.** Simplify each expression.
 - **a)** $(2x^3)^2$ **b)** $(4y^2)^3$ **c)** $(3x^6y^5)^2$

- **3.** For each equation, use the same number in each box to make a true statement.
 - $\mathbf{a)} \left(\square \right) \left(\square \right) \left(\square \right) = 64$
 - $\mathbf{b})\left(\boxed{}\right)\left(\boxed{}\right)\left(\boxed{}\right)=8$
 - $\mathbf{c}) \left(\boxed{} \right) \left(\boxed{} \right) = 27$
 - $\mathbf{d})\left(\boxed{}\right)\left(\boxed{}\right)\left(\boxed{}\right) = 1000$
- 4. Evaluate.
 - **a)** 2^3 **b)** 3^2 **c)** 5^3

Date:

- **5.** Rewrite each number as a product of prime numbers.
 - **a)** 12 **b)** 90 **c)** 112
- 4. Evaluate.
 - **a**) $\frac{3}{5} \div \frac{2}{3}$
 - **b**) $\left(\frac{1}{2}\right)^4$
 - c) $5 \div \frac{2}{3}$
- **5.** What is the missing number?
 - **a**) $2^{\square} = 32$
 - **b**) $\left(\frac{1}{2}\right)^{\square} = \frac{1}{16}$
 - **c**) $3^{\square} = 81$
 - $\mathbf{d}) \left(\frac{1}{3}\right)^{\square} = \frac{1}{27}$

Section 4.3 Warm-Up

- 1. Calculate without using a calculator.
 - **a**) $\frac{3}{4} + \frac{5}{6}$
 - **b**) $\frac{3}{8} \frac{1}{4}$
 - c) $\frac{5}{6} \frac{1}{2} + \frac{3}{4}$
- 2. Evaluate without using a calculator.
 - **a**) 5⁰
 - **b)** 2^{-3}
 - **c)** $\left(\frac{3}{4}\right)^{-2}$
 - $\mathbf{d}) \left(\frac{-5}{3} \right)^{-4}$

Section 4.4 Warm-Up

- **1.** Write the prime factorization for each number.
 - **a)** 54
 - **b**) 180
 - **c)** 200
- 2. Evaluate.
 - **a**) $\sqrt[3]{125}$
 - **b**) $-\sqrt{10\,000}$
 - c) $\sqrt[3]{-64}$
- 3. Rewrite each radical as a power.
 - a) $\sqrt{7}$
 - **b**) ³√−8
 - **c**) $\sqrt[3]{x^5}$

- **3.** Use the exponent laws to rewrite each expression as a single power.
 - **a)** $(y^8) (y^{-2})$

Date:

- **b)** $\frac{(b^5)(b^{-1})}{b^{-3}}$
- **c**) $(x^5)^{-2}$
- **d)** $\frac{y^7}{(y^{-4})^{-3}}$
- **4.** Convert each fraction to a decimal.
 - **a)** $\frac{7}{8}$ **b)** $\frac{4}{5}$ **c)** $\frac{11}{16}$
- 5. A vehicle decreases in value by 15% each year. If it was worth \$35 000 when it was new, what would be its value after three years? Give the answer to the nearest dollar.
 - **4.** Evaluate each expression. Write each answer as an integer or a fraction.
 - **a)** $27^{\frac{2}{3}}$
 - **b**) $16^{-\frac{1}{2}}$
 - **c**) $(-8)^{-\frac{4}{3}}$
- **5.** Which of the following sequences of keystrokes will correctly evaluate $\frac{3+9}{3}$?

Hint: There may be more than one correct sequence.

- **a**) $3 + 9 \div 3$
- **b**) $(3+9) \div 3$
- **c**) $3 \div 3 + 9 \div 3$
- **d)** $3 \div 3 + 9$