Aim How do we factor trinomials by using special cases?

DoNow

1.
$$(x+1)(x-1) =$$

3.
$$(x+1)(x+1) =$$

5.
$$(x-1)(x-1) =$$

2.
$$(x+2)(x-2) =$$

4.
$$(x+2)(x+2) =$$

6.
$$(x-2)(x-2) =$$

Lesson

- 1. Factoring the difference of two perfect squares
 - a. When two binomials have the form A + B and A B, they cab be quickly multiplied together as $A^2 B^2$.
 - b. Therefore, whenever you encounter a binomial that has the form $A^2 B^2$, you can reverse the multiplication by factoring the binomial as (A + B)(A B).

c. **Example**: Multiplication—
$$(x + 3)(x - 3) = x^2 - 3^2 = x^2 - 9$$

Factoring— $x^2 - 9 = x^2 - 3^2 = (x + 3)(x - 3)$

d. **Exercise:** Factor the following polynomials as the products of two binomials:

1)
$$x^2 - 100$$

2)
$$9x^2 - 49$$

3)
$$16 x^2 - 25$$

2. Factoring a perfect square trinomial

- a. When you multiply a binomial by itself, you are squaring a binomial. The result is a perfect square trinomial.
- b. When you factor a perfect square trinomial, the two binomial factors are the same.
- c. For all real numbers *a* and *b*:

$$a^{2} + 2ab + b^{2} = (a + b)(a + b) = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)(a - b) = (a - b)^{2}$

d. Example:

1)
$$x^2 + 10x + 25 = (x + 5)(x + 5) = (x + 5)^2$$

2)
$$x^2 - 10x + 25 = (x - 5)(x - 5) = (x - 5)^2$$

e. Exercise: Factor the following polynomials as the products of two binomials:

1)
$$x^2 + 4x + 4$$

2)
$$x^2 + 6x + 9$$

3)
$$x^2 - 20 x + 100$$

6)
$$4x^2 + 12x + 9$$

4)
$$x^2 - 8x + 16$$

7)
$$25x^2 - 40x + 16$$

5)
$$9x^2 + 24x + 16$$

8)
$$16x^2 - 56x + 49$$

3. Factoring polynomials completely

- a. A polynomial is factored completely when each of its factors cannot be factored further.
- b. Example:

1)
$$10x^2 - 40 = 10(x^2 - 4) = 10(x + 2)(x - 2)$$

2)
$$2x^3 - 72x = 2x(x^2-36) = 2x(x+6)(x-6)$$

c. **Exercise:** Factor the following polynomials completely:

1)
$$2x^3 - 50x$$

4)
$$2x^3 - 72x$$

2)
$$3x^3 + 18x^2 - 48x$$

5)
$$2x^2 + 14x + 20$$

3)
$$10x^4 + 50x^3 - 500x^2$$

6)
$$3x^2 + 15x + 12$$

 $2. \quad x^2 + 8x + 16 =$

 $3. \quad 3x^3 - 9x^2 + 6x =$

4. $9x^2 - 49 =$

5. $x^2 - 6x + 9 =$

 $6. \quad 4x^2 + 12x + 9 =$

7. $5x^2 + 10x - 15 =$

8. $4x^2 - 100 =$

9. $2x^3 - 8x^2 + 8x =$

10. $x^2 - 8x + 16 =$

11. $-x^2 - 2x + 15 =$

12. $x^2 - 36 =$