Mathematics 10C Formula Sheet

Pythagorean Theorem

$$side_1^2 + side_2^2 = hypotenuse_0^2$$
 or $a^2 + b^2 = c^2$

hypotenuse $side_1$

 $side_2$

Right Angle Triangle Trigonometry

$$\sin A = \frac{opposite}{hypotenuse}$$

$$\cos A = \frac{adjacent}{hypotenuse} \quad \tan A = \frac{op}{ad}$$

Trigonometry
$$\tan A = \frac{opposite}{adjacent}$$

Metric System

km hm dm dam m cm mm

Conversion Chart

Relationships between common	Relationships between Common Imperial Units	
Imperial Units	and Metric Units	
Length	1 inch = 2.54 cm	1 cm = 0.3937 inches
• 1 mile = 1760 yards = 5280 feet	1 mile = 1.609 km	1 km = 0.6214 miles
• 1 yard = 3 feet = 36 inches	1 yard = 0.9144 m	1 m = 1.0936 yards
• 1 foot = 12 inches	1 foot = 0.3048 m	1 m = 3.2808 feet

Line Segments and Linear Functions

$$y = mx + b$$
$$slope = \frac{rise}{run}$$

$$(y - y_1) = m(x - x_1)$$

$$(y - y_1) = m(x - x_1)$$
 $Ax + By + C = 0, A, B, C \cup I$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Perimeter, Circumference and Area

$$P = 4x$$

$$A = x^2$$

$$P = 2l + 2w$$

$$M = lw$$

$$C = 2pr$$

$$C = 2pr$$

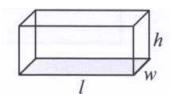
$$C = pd$$

$$A = pr^2$$

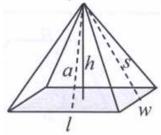
$$P = side + side + side$$

$$A = \frac{bh}{2}$$

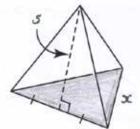
Surface Area and Volume


Surface Area

$$SA = 6x^2$$


$$V = x^3$$

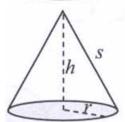
$$SA = 2lw + 2wh + 2lh$$


$$V = lwh$$

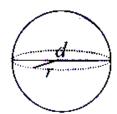
$$SA = lw + 2 \frac{1}{2}al + 2 \frac{1}{2}sw$$

$$V = \frac{1}{3}lwh$$

$$SA = 4 \frac{1}{2} sx$$


 $V=\frac{1}{3}$ (Area of Base) (Height)

$$SA = 2pr^2 + 2prh$$


$$V = \rho r^2 h$$

$$SA = \rho rs + \rho r^2$$

$$V = \frac{1}{3} \rho r^2 h$$

$$SA = 4\rho r^2$$

$$V = \frac{4}{3}\rho r^3$$

Hemisphere:
$$SA = 3 pr^2$$

$$V = \frac{2}{3} \rho r^3$$