Unit 2: Algebra and Number:

In this unit we will solve problems involving:

- square roots and cube roots
- integral and rational exponents
- irrational numbers, including radicals
- multiplying polynomials
- factoring polynomials

Chapter 5: Polynomials

Okay fair warning this chapter gets a little crazy... but we got this

5.1 Multiplying Polynomials... But first, just multiplying numbers

Quick! (13)(15) = ? No calculator!!

We can use the same method when multiplying polynomials. $(x+3)(x+1)=$
Solve the following using the area method : (x-3)(2x+1)
Method #2: Using the distributive property: Notice the similarities?
1

Multiply (also called EXPAND) (x-2y)(x-4y)

Multiplying a binomial and a trinomial.. Same thing, more terms (x+2)(2x²-5x+1)

HMWK: Pg 209 a	

5.1 Continued: The Word Problems

A circle is inset into a square with a side length of 6x+4. Write an expression to represent the area of the circle. Multiply, then combine like terms.

5.2 Common Factors - GCF and LCM

What is the difference between a **multiple** and a **factor** of a number?

GREATEST COMMON FACTOR: is the greatest factor that is common between two or more			
numbers Note: these DO NOT HAVE TO BE PRIME NUMBERS			
Find the GCF of 84 and 140 using prime factorization			
84, 140			

Find the GCF of 220, 860				

Find the GCF of 220x²y and 860x	

Factor the polynomial by "removing" the GCF 27r²s² - 18r³s² - 36rs³

HMWK: Pg 220 #2, 4-7, 11, 12

5.1 Word Problems and LCM

Find the Lowest Common Multiple of the following two numbers: 30 and 40

Determine least common multiple of 15, 32, 44
3 or more numbers - when factoring with a PRIME number it only has to divide TWO of the numbers the third one just gets pulled down as follows

What is the side length of the smallest square that could be tiled with rectangles that measure 16 cm by 40 cm? Assume the rectangles cannot be cut.

HMWK: Pg 220 #3, 8, 13, 15, 16

5.3 Factoring Trinomials (This is the crazy part)

RECALL:

Expand
$$\longrightarrow$$
 3(2 - 5a) = 6 - 15a

Factor
$$\longrightarrow$$
 6 - 15a = 3(2 - 5a)

factoring and expanding are inverse processes

Review: Expand and Simplify (c+5)(c+3).

Recall 12x13=156

100+30+20+6=156

Multiplying 12x13 =156, therefore, 12 and 13 are both factors of 156.

Factoring in the form $x^2 + bx + c$

Let's look again at the area method for multiplying binomials...

Consider: How do we form the "b" value and the "c" value in the polynomial?

Multiply: (x+5)(x+3)

Let's try it!

Factor the following trinomial:

 $x^2 - 8x + 7$

We we will need factors of + 7 that have a sum of -8.

the trinomialwatch out for the negative sign! + 7a - 18
HMWK: SOLARO ASSIGNMENT

More Factoring in the form $x^2 + bx + c$

Factoring worksheet - yay!

Note: NOT all trinomials are factorable! If our conditions can't be met then it can't be factored.

5.3 Factoring in the form $ax^2 + bx + c$			
First things first though expand and simplify this:			
(-2x + 8)(7 - 3x)			

Now, nice and slow, let's factor the trinomial

Remember: Factoring and expanding are inverse processes!

 $4x^2 + 20x + 9$

Factor: 3x ² + 8x + 4	

F	Factor: 24x² -30x - 9				

HMWK: FACTORING WORKSHEET #2
5.3 Factoring in the form ax² + bx + c
WORK BLOCK Textbook Pg 236 #15, 16 (word problems) Worksheet from last class

5.4 Factoring Special Trinomials

Difference of Squares: u2 - v2

A square term minus another square term.

Perfect Square Trinomial: $x^2+2\sqrt{c}+c$, where c is a perfect square

Difference of Squares -- easily recognized for having only 2 terms, both being squares

$$x^2-9$$

$$16c^2+25a^2$$

HMWK: Pg 246 #4, 5-6aceg, 8, 13, 14, 15

Factoring Review	
Ch 5 Review	

Ch 5 Review	
Ch 5 Review	