Math 10 Common

Midterm Review Assignment Ch. 1, 3, 4

(COMPLETE ALL on a SEPARATE piece of paper)

Unit 1 - Powers and Roots

- 1. Estimate the value of the following roots without using a calculator.
- b. $\sqrt{47}$
- c. $\sqrt[3]{34}$ d. $\sqrt[4]{82}$
- Write each power with positive exponents. 2.
- a. $(x^{-4})^2$ b. $\frac{s^3}{s^{-3}}$ c. $\frac{(-2.6)^4}{(-2.6)^{-2}}$ d. $\frac{(4k)^2}{(4k)^{-3}}$
- Evaluate each expression. Express your answers to four decimal places, if necessary. 3.
 - a. $(3^{-2})^{-2}$

- b. $\left| \frac{4.5}{(3^2)(1.5)} \right|$
- c. $[(1.2^3)(1.2^{-2})]^{-4}$
- d. $\left[\frac{(4x^{-2})}{(4x)^3} \right]^2$
- A ball is dropped from a height of 3 m and allowed to bounce freely. The height, h, in metres, 4. that is rebounds can be modeled using the formula $h = 3(0.7)^n$. In this formula, n is the number of bounces.
 - a. How high does the ball reach on the third bounce? Express the answer to two decimal places.
 - b. After how many bounces does the ball reach a maximum height of 0.5 m?
- 5. Simplify each expression. Express the answers with positive exponents.
 - a. $(x^{\frac{-4}{3}})^{\frac{1}{4}}$

- b. $\frac{4^{\frac{2}{5}}}{4^{-0.6}}$ c. $(16g^8)^{\frac{-3}{4}}$
- d. $\left(\frac{t^2}{\frac{-1}{2}}\right)^3$
- 6. A radioactive element has a half-life of one week. The formula for the amount of the element remaining is $A = 500 \left(\frac{1}{2}\right)^n$, where *n* is the number of weeks. How much of a 500 g sample of the element
 - a. remains after five weeks?

- b. was there four weeks ago?
- Barb incorrectly simplified $(27x^4)^{\frac{2}{3}}$ as $18x^{\frac{8}{3}}$. What error did she make? What is the correct 7. answer?

8. Write each power as an equivalent radical.

a.
$$x^{\frac{3}{5}}$$

b.
$$(27t^2)^{\frac{2}{3}}$$

c.
$$\left(\frac{g^3}{18}\right)^{0.5}$$

9. Express each radical as a power.

a.
$$\sqrt{(xp)^5}$$

b.
$$\sqrt[3]{2^5}$$

c.
$$3\sqrt[5]{x^4}$$

Convert each mixed radical to an equivalent entire radical.

a.
$$3\sqrt{12}$$

b.
$$2\sqrt{10}$$

c.
$$4\sqrt[3]{5}$$

d.
$$-2\sqrt[3]{2}$$

Express each entire radical as an equivalent mixed radical.

a.
$$\sqrt{180}$$

b.
$$\sqrt{192}$$

c.
$$\sqrt[3]{128}$$

d.
$$\sqrt[4]{48}$$

Identify the irrational numbers in each set. Then, order all the numbers from greatest to least.

a.
$$0.\overline{24}$$
 $\frac{\pi}{3}$ $\sqrt{0.9}$ $\sqrt[5]{96}$

a.
$$0.\overline{24}$$
 $\frac{\pi}{3}$ $\sqrt{0.9}$ $\sqrt[5]{96}$ b. $6.\overline{2}$ $18^{\frac{1}{2}}$ $\sqrt{36}$ $2\sqrt[3]{27}$

Unit 2 - Factors and Products

13. Add and/or subtract as required.

a.
$$(-7x^2 - 4x + 13) - (3x^2 - x - 4)$$

a.
$$(-7x^2 - 4x + 13) - (3x^2 - x - 4)$$
 b. $(3xy + 7x^3 - 3y^2) + (3y^2 - xy) - (2xy - 5x^3)$

c.
$$7x + 4(3x - 4) + (2x - 7)$$

c.
$$7x + 4(3x - 4) + (2x - 7)$$
 d. $7(3m - 4) + 7 - 3(2m + 1) - 7m$

Perform the following divisions.

a.
$$\frac{15c^2 - 21c^5 + 9c}{3c}$$

b.
$$\frac{10x^4y^6 - 40xy^7}{-10xy^4}$$

- 15. Determine the prime factorization of the following numbers.

b. 440

- c. 1575
- 16. Determine the greatest common factor of the following sets of numbers.
 - a. 60, 84, 144

b. 55, 77, 99

- c. 220, 440, 600
- 17. Determine the lowest common multiple of the following sets of numbers.
 - a. 8, 12, 16

b. 6, 9, 15

- c. 3, 5, 20
- 18. A square has an area of 1764 ft². What are the lengths of each side?
- 19. A cube has a volume of 12167 cm³. What is the length of each side?

- 20. Determine if each number is a perfect square or a perfect cube.
 - a. 289
- b. 1331
- c. 9261
- d. 3025
- 21. Determine the greatest common factor for each polynomial.

a.
$$12m - 18m^3$$

b.
$$18 + 12x - 24x^2$$

c.
$$-15m^7 - 45m^5 + 30m^2$$

22. A student removed the GCFs from two polynomials as shown below. Find and correct their mistakes.

a.
$$8x^2 - 6x + 20$$

$$2(4x^2 + 3x + 10)$$

$$b. 15m^3n^5 + 25m^5n^2 - 100m^2n$$

$$5m^2 \left(3mn^5 + 5m^3n^2 - 20n\right)$$

23. Simplify the following.

a.
$$-5x^3(2x - 7y + 1)$$

b.
$$(h-5)(h+7)$$

d.
$$(7x^2 - 3)(7x^2 + 3)$$

e.
$$(x+2)(x-5) + (x+2)^2 - (x-3)(x+3)$$

f.
$$(3x^3y^5)(-5x^4y)$$

24. For the rectangular prism, write and simplify an expression that represents the volume:

$$V = lwh$$

25. Factor completely.

a.
$$7x^3 - 14x$$

b.
$$4x^2 - 81y^6$$

c.
$$x^2 - 11x + 28$$

d.
$$y^6 + 3y^3 - 10$$

e.
$$6x^2 + 23x + 7$$

f.
$$3x(a-2b) + y(a-2b) + 7(a-2b)$$

g.
$$x^2 - 16$$

h.
$$x^4 - 25y^8$$

i.
$$2x(2x-5d) - 7m(2x-5d)$$

j.
$$15y^2 - 19y + 6$$

k.
$$ax^2 - 10ax - 24a$$

1.
$$3x^4 - 5x^2 - 28$$

m.
$$14x^2 + 17x - 6$$

n.
$$x^2 - 17x - 60$$

26. Use algebra tiles to factor the following:

a.
$$x^2+9x+8$$

b.
$$2x^2+11x+5$$

27. Find the area of the shaded region.

Unit 3 - Measurement

- 28. Alex purchased 7 yd. of ribbon to trim some napkins. The ribbon is sewn around a napkin, which is 14 in. wide and 16 in. long. How many napkins can Alex trim with this ribbon?
- 29. A dog trainer advises that, when walking a dog on a city street, the walker should allow the dog 42 in. of leash. Greg bought a retractable leash that extends 5 ½ yd. Greg follows the trainer's advice. What length of leash, in inches, is not used (to the nearest inch)?
- 30. A truck driver wants to park her 3.25 m high truck in a storage shed that is 11 ft. 6 in. high. Will the truck fit in the shed? Justify your answer.
- 31. To qualify for the school volleyball try-outs, Rick needs to be able to jump and touch a line on the wall that is 8 ft. 2 in. off the ground. In his workouts, Rick jumped 243 cm. Will he qualify for the try-outs?
- 32. Calculate the surface area of the following pyramids (round to the nearest tenth)

- 33. Calculate the dimension indicated by the variable to the nearest tenth.
 - b) right square a) right rectangular pyramid prism $V = 554.9 \text{ m}^3$ 3.2 cm $V = 88.8 \text{ cm}^3$
 - c) right cylinder d) right cone

- 34. Determine the surface area and volume of the composite objects to the nearest tenth.
 - a) right cylinder and hemispheres

b) right square prism and right square pyramid

